Nonnegative Matrix Factorization Via Archetypal Analysis
نویسندگان
چکیده
منابع مشابه
Non-negative Matrix Factorization via Archetypal Analysis
Given a collection of data points, non-negative matrix factorization (NMF) suggests to express them as convex combinations of a small set of ‘archetypes’ with non-negative entries. This decomposition is unique only if the true archetypes are non-negative and sufficiently sparse (or the weights are sufficiently sparse), a regime that is captured by the separability condition and its generalizati...
متن کاملIllumination estimation via nonnegative matrix factorization
The problem of illumination estimation for color constancy and automatic white balancing of digital color imagery can be viewed as the separation of the image into illumination and reflectance components. We propose using nonnegative matrix factorization with sparseness constraints to separate these components. Since illumination and reflectance are combinedmultiplicatively, the first step is t...
متن کاملApproximate Nonnegative Matrix Factorization via Alternating Minimization
In this paper we consider the Nonnegative Matrix Factorization (NMF) problem: given an (elementwise) nonnegative matrix V ∈ R + find, for assigned k, nonnegative matrices W ∈ R + and H ∈ R k×n + such that V = WH . Exact, non trivial, nonnegative factorizations do not always exist, hence it is interesting to pose the approximate NMF problem. The criterion which is commonly employed is I-divergen...
متن کاملCharacter Recognition Analysis with Nonnegative Matrix Factorization
In this paper, we analyze character recognition performance of three different nonnegative matrix factorization (NMF) algorithms. These are multiplicative update (MU) rule known as standard NMF, alternating least square (NMF-ALS) and projected gradient descent (NMF-PGD). They are most preferred approaches in the literature. There are lots of application areas for NMF such as robotics, bioinform...
متن کاملNonnegative Matrix Factorization for Spectral Data Analysis
Data analysis is pervasive throughout business, engineering and science. Very often the data to be analyzed is nonnegative, and it is often preferable to take this constraint into account in the analysis process. Here we are concerned with the application of analyzing data obtained using astronomical spectrometers, which provide spectral data which is inherently nonnegative. The identification ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2019
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2019.1594832